Project Metamorphosis: Unveiling the next-gen event streaming platformLearn More

Apache Kafka and Kafka Streams at Berlin Buzzwords

At the beginning of June several Confluent team members attended Berlin Buzzwords 2016, where we gave three talks focused on stream processing and distributed computing. These talks, which we summarize further down below, fit right into the general excitement and interest in stream processing at Buzzwords and beyond. In fact, many of the sessions at Berlin Buzzwords were about Kafka or stream processing.

Neha Narkhede, co-founder and CTO of Confluent, gave the keynote Application Development and Data in the Emerging World of Stream Processing (video, slides). In her talk, Neha explained how the fundamental nature of application development will change as stream processing goes mainstream. Over the past years, a strong shift towards stream processing has driven the popularity of Apache Kafka. Making all the data of an organization available centrally as free-flowing data streams enables a company’s business logic to be represented as stream processing operations. Essentially, applications are stateful stream processors in this new world of stream processing. And to help application developers successfully make this important shift towards stream processing the Kafka community and Confluent created Kafka Streams, which is a powerful yet easy-to-use stream processing library that is part of the open source Apache Kafka project since the recently released Kafka version 0.10.

Berlin Buzzwords

Neha Narkhede starting day two of Berlin Buzzwords with her keynote on Applications in the Emerging World of Stream Processing

Michael Noll, product manager for Kafka Streams at Confluent, introduced Kafka Streams in more detail (video | slides). Michael covered the motivation and design of Kafka Streams and walked the audience through its concepts and key features. Notably, Kafka Streams was purposefully built to have a very low barrier to entry and easy operationalization (no cluster needed). It comes with an expressive API that allows developers to quickly write stream processing applications on top of Kafka that are highly scalable, fault-tolerant, and elastic out of the box. Now how can you get started using Kafka Streams? We recommend to take a look at our Kafka Streams demo applications and browse through the Kafka Streams documentation (e.g. our quickstart). If you want to take it a step further, you might want to download Confluent Platform 3.0, which includes Apache Kafka 0.10 with Kafka Streams alongside further components such as the management application Confluent Control Center, Kafka clients for C/C++ and Python as well as connectors to exchange data between Kafka and other systems such as databases or Hadoop.

Flavio Junqueira, co-creator of Apache ZooKeeper and infrastructure engineer in Confluent’s Kafka team, gave the talk Towards consensus on Distributed Consensus (video, slides). While keeping the discussion away from pure theory, Flavio revisited the distributed consensus problem in the light of fundamental academic results such as the relationship between state-machine replication and atomic broadcast, the equivalence between atomic broadcast and consensus, and the impossibility of consensus in asynchronous systems. Flavio discussed such primitives in the context of projects like Apache Kafka and Apache BookKeeper, highlighting that the core operation such systems use for replication are closely related to consensus, even though it is not directly perceived as being consensus. Although it might be possible to reduce the reliance on such primitives, distributed consensus is certainly not going away because it is really fundamental to many practical problems in the domain of distributed computing.

We hope you’ll enjoy these talks! If we raised your interest in stream processing and Kafka Streams, you may want to join our bi-weekly Ask Me Anything sessions on Kafka Streams and Kafka Connect. Simply drop drop us a note so that we can send you an invite. Of course you can also reach out to us in case you have further questions or want to follow-up.

Did you like this blog post? Share it now

Subscribe to the Confluent blog

More Articles Like This

Building a Clickstream Dashboard Application with ksqlDB and Elasticsearch

Using a powerful, event-driven application can help you unlock insights contained in the event streams of your business. Before we get into the technology, let’s go over some questions you […]

Kafka Streams Interactive Queries Go Prime Time

What is stopping you from using Kafka Streams as your data layer for building applications? After all, it comes with fast, embedded RocksDB storage, takes care of redundancy for you, […]

From Eager to Smarter in Apache Kafka Consumer Rebalances

Everyone wants their infrastructure to be highly available, and ksqlDB is no different. But crucial properties like high availability don’t come without a thoughtful, rigorous design. We thought hard about […]

Sign Up Now

Start your 3-month trial. Get up to $200 off on each of your first 3 Confluent Cloud monthly bills

新規登録のみ。

上の「新規登録」をクリックすることにより、当社がお客様の個人情報を以下に従い処理することを理解されたものとみなします : プライバシーポリシー

上記の「新規登録」をクリックすることにより、お客様は以下に同意するものとします。 サービス利用規約 Confluent からのマーケティングメールの随時受信にも同意するものとします。また、当社がお客様の個人情報を以下に従い処理することを理解されたものとみなします: プライバシーポリシー

単一の Kafka Broker の場合には永遠に無料
i

商用版の機能を単一の Kafka Broker で無期限で使用できるソフトウェアです。2番目の Broker を追加すると、30日間の商用版試用期間が自動で開始します。この制限を単一の Broker へ戻すことでリセットすることはできません。

デプロイのタイプを選択
手動デプロイ
  • tar
  • zip
  • deb
  • rpm
  • docker
または
自動デプロイ
  • kubernetes
  • ansible

上の「無料ダウンロード」をクリックすることにより、当社がお客様の個人情報をプライバシーポリシーに従い処理することを理解されたものとみなします。 プライバシーポリシー

以下の「ダウンロード」をクリックすることにより、お客様は以下に同意するものとします。 Confluent ライセンス契約 Confluent からのマーケティングメールの随時受信にも同意するものとします。また、お客様の個人データが以下に従い処理することにも同意するものとします: プライバシーポリシー

このウェブサイトでは、ユーザーエクスペリエンスの向上に加え、ウェブサイトのパフォーマンスとトラフィック分析のため、Cookie を使用しています。また、サイトの使用に関する情報をソーシャルメディア、広告、分析のパートナーと共有しています。